Formulae on Differentiation.
ddxC=0,whereC=constat
ddxxn=nxn−1
ddxsinx=cosx
ddxcosx=−sinx
ddxsin−1x=11−x2
ddxcos−1x=−11−x2
ddxax=axlna
ddxex=ex
ddxsinhx=coshx
ddxcoshx=sinhx
ddxsinh−1x=1x2+1
ddxcosh−1x=1x2−1
ddxtanx=sec2x
ddxcotx=csc2x
ddxtan−1x=11+x2
ddxcot−1x=−11+x2
ddxlnx=1x
ddxtanhx=1cosh2x
ddxcothx=1sinh2x
ddxcscx=−cscxcotx
ddxsecx=secxtanx
ddxsec−1x=1xx2−1
ddxcsc−1x=−1xx2−1